(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
diff(x, y) → cond1(equal(x, y), x, y)
cond1(true, x, y) → 0
cond1(false, x, y) → cond2(gt(x, y), x, y)
cond2(true, x, y) → s(diff(x, s(y)))
cond2(false, x, y) → s(diff(s(x), y))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
diff(x, y) → cond1(equal(x, y), x, y)
cond1(true, x, y) → 0'
cond1(false, x, y) → cond2(gt(x, y), x, y)
cond2(true, x, y) → s(diff(x, s(y)))
cond2(false, x, y) → s(diff(s(x), y))
gt(0', v) → false
gt(s(u), 0') → true
gt(s(u), s(v)) → gt(u, v)
equal(0', 0') → true
equal(s(x), 0') → false
equal(0', s(y)) → false
equal(s(x), s(y)) → equal(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
diff(x, y) → cond1(equal(x, y), x, y)
cond1(true, x, y) → 0'
cond1(false, x, y) → cond2(gt(x, y), x, y)
cond2(true, x, y) → s(diff(x, s(y)))
cond2(false, x, y) → s(diff(s(x), y))
gt(0', v) → false
gt(s(u), 0') → true
gt(s(u), s(v)) → gt(u, v)
equal(0', 0') → true
equal(s(x), 0') → false
equal(0', s(y)) → false
equal(s(x), s(y)) → equal(x, y)
Types:
diff :: 0':s → 0':s → 0':s
cond1 :: true:false → 0':s → 0':s → 0':s
equal :: 0':s → 0':s → true:false
true :: true:false
0' :: 0':s
false :: true:false
cond2 :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
diff,
equal,
gtThey will be analysed ascendingly in the following order:
equal < diff
gt < diff
(6) Obligation:
Innermost TRS:
Rules:
diff(
x,
y) →
cond1(
equal(
x,
y),
x,
y)
cond1(
true,
x,
y) →
0'cond1(
false,
x,
y) →
cond2(
gt(
x,
y),
x,
y)
cond2(
true,
x,
y) →
s(
diff(
x,
s(
y)))
cond2(
false,
x,
y) →
s(
diff(
s(
x),
y))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
diff :: 0':s → 0':s → 0':s
cond1 :: true:false → 0':s → 0':s → 0':s
equal :: 0':s → 0':s → true:false
true :: true:false
0' :: 0':s
false :: true:false
cond2 :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
equal, diff, gt
They will be analysed ascendingly in the following order:
equal < diff
gt < diff
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
equal(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
equal(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
equal(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
equal(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
diff(
x,
y) →
cond1(
equal(
x,
y),
x,
y)
cond1(
true,
x,
y) →
0'cond1(
false,
x,
y) →
cond2(
gt(
x,
y),
x,
y)
cond2(
true,
x,
y) →
s(
diff(
x,
s(
y)))
cond2(
false,
x,
y) →
s(
diff(
s(
x),
y))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
diff :: 0':s → 0':s → 0':s
cond1 :: true:false → 0':s → 0':s → 0':s
equal :: 0':s → 0':s → true:false
true :: true:false
0' :: 0':s
false :: true:false
cond2 :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
equal(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
gt, diff
They will be analysed ascendingly in the following order:
gt < diff
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gt(
gen_0':s3_0(
n552_0),
gen_0':s3_0(
n552_0)) →
false, rt ∈ Ω(1 + n552
0)
Induction Base:
gt(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
false
Induction Step:
gt(gen_0':s3_0(+(n552_0, 1)), gen_0':s3_0(+(n552_0, 1))) →RΩ(1)
gt(gen_0':s3_0(n552_0), gen_0':s3_0(n552_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
diff(
x,
y) →
cond1(
equal(
x,
y),
x,
y)
cond1(
true,
x,
y) →
0'cond1(
false,
x,
y) →
cond2(
gt(
x,
y),
x,
y)
cond2(
true,
x,
y) →
s(
diff(
x,
s(
y)))
cond2(
false,
x,
y) →
s(
diff(
s(
x),
y))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
diff :: 0':s → 0':s → 0':s
cond1 :: true:false → 0':s → 0':s → 0':s
equal :: 0':s → 0':s → true:false
true :: true:false
0' :: 0':s
false :: true:false
cond2 :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
equal(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
gt(gen_0':s3_0(n552_0), gen_0':s3_0(n552_0)) → false, rt ∈ Ω(1 + n5520)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
diff
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol diff.
(14) Obligation:
Innermost TRS:
Rules:
diff(
x,
y) →
cond1(
equal(
x,
y),
x,
y)
cond1(
true,
x,
y) →
0'cond1(
false,
x,
y) →
cond2(
gt(
x,
y),
x,
y)
cond2(
true,
x,
y) →
s(
diff(
x,
s(
y)))
cond2(
false,
x,
y) →
s(
diff(
s(
x),
y))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
diff :: 0':s → 0':s → 0':s
cond1 :: true:false → 0':s → 0':s → 0':s
equal :: 0':s → 0':s → true:false
true :: true:false
0' :: 0':s
false :: true:false
cond2 :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
equal(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
gt(gen_0':s3_0(n552_0), gen_0':s3_0(n552_0)) → false, rt ∈ Ω(1 + n5520)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
equal(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
diff(
x,
y) →
cond1(
equal(
x,
y),
x,
y)
cond1(
true,
x,
y) →
0'cond1(
false,
x,
y) →
cond2(
gt(
x,
y),
x,
y)
cond2(
true,
x,
y) →
s(
diff(
x,
s(
y)))
cond2(
false,
x,
y) →
s(
diff(
s(
x),
y))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
diff :: 0':s → 0':s → 0':s
cond1 :: true:false → 0':s → 0':s → 0':s
equal :: 0':s → 0':s → true:false
true :: true:false
0' :: 0':s
false :: true:false
cond2 :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
equal(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
gt(gen_0':s3_0(n552_0), gen_0':s3_0(n552_0)) → false, rt ∈ Ω(1 + n5520)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
equal(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
diff(
x,
y) →
cond1(
equal(
x,
y),
x,
y)
cond1(
true,
x,
y) →
0'cond1(
false,
x,
y) →
cond2(
gt(
x,
y),
x,
y)
cond2(
true,
x,
y) →
s(
diff(
x,
s(
y)))
cond2(
false,
x,
y) →
s(
diff(
s(
x),
y))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
diff :: 0':s → 0':s → 0':s
cond1 :: true:false → 0':s → 0':s → 0':s
equal :: 0':s → 0':s → true:false
true :: true:false
0' :: 0':s
false :: true:false
cond2 :: true:false → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
equal(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
equal(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)